organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ali Benboudiaf,^a Adel Beghidja,^a* Chahrazed Beghidia,^a Lahcène Ouahab^b and Salah Eddine Bouaoud^a

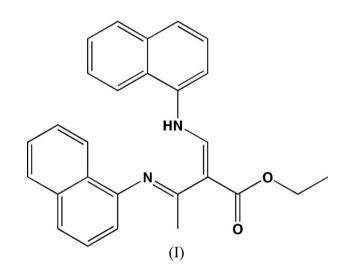
^aLaboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et des Mesures Physico-Chimiques Eaculté des Sciences Exactes, Département de Chimie, Université Mentouri Constantine 25000, Algeria, and ^bLaboratoire de Chimie du Solide et Inorganique Moléculaire, UMR CNRS 6511 Université Rennes I, Institut de Chimie de Rennes, 35042 Rennes Cedex, France

Correspondence e-mail: a_beghidja@yahoo.fr

Key indicators

Single-crystal X-ray study T = 173 KMean σ (C–C) = 0.003 Å R factor = 0.056 wR factor = 0.175 Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://iournals.iucr.org/e.


© 2006 International Union of Crystallography All rights reserved

(2E,3E)-Ethyl 2-[(naphthalen-8-ylamino)methylene]-3-(naphthalen-1-ylimino)butanoate

The title compound, $C_{27}H_{24}N_2O_2$, is built up from an unsaturated ester attached to two naphthylamine fragments. An intramolecular $N-H \cdots N$ hydrogen bond may influence the conformation of the molecule.

Comment

The biological and pharmaceutical importance of quinoline and benzoquinoline derivatives is of growing interest (Kerry et al., 1999). Their antimalarial properties confer on them a recognized medicinal application (Narine & Meth-Cohn, 1979; Kraak et al., 1997; Moussoui et al., 2002).

Our group recently reported the structures of 2-chloro-3chloromethylbenzo[h]quinoline (Beghidja et al., 2004) and 2methyl-3-ethyl methanoate benzo[h]quinoline (Benboudiaf et al., 2005) obtained using the Vilsmeir method (Meth-Cohn et al., 1981). During the preparation of this last derivative, a second compound, (I), was isolated; its structure is reported here.

The structure of (I) is built up from an unsaturated ester attached to two naphthylamine fragments (Fig. 1). The two naphthalene systems make a planar and make a dihedral angle of 71.44 (1)°. Bond distances and angles are within expected ranges and comparable with those for related compounds. There is an intramolecular $N-H \cdots N$ hydrogen bond (Table 1) which may influence the conformation of the molecule.

Experimental

At a temperature ranging between 273 and 278 K, phosphorus oxychloride (POCl₃, 0.015 mol) was added dropwise to dry dimethylformamide (DMF, 0.015 mol). Stirring was continued for

Received 11 November 2006 Accepted 20 November 2006 30 min, then a solution of (*E*)-ethyl 3-(naphthalen-8-ylamino)but-2enoate (0.05 mol) in purified chloroform (25 ml) was added. The resulting mixture was stirred at 273 K for 2 h and then allowed to stand at room temperature before being transferred to a saturated NaHCO₃ aqueous solution. The organic layer was extracted with chloroform and dried with anhydrous magnesium sulfate. After evaporation of the CH₃Cl *in vacuo* overnight, a yellow solid residue was obtained. Yellow needle-shaped crystals of (I) were obtained by slow evaporation.

Z = 4

 $D_x = 1.258 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 173 (2) KNeedle, yellow $0.3 \times 0.2 \times 0.15 \text{ mm}$

4889 independent reflections

 $R_{\rm int} = 0.030$

 $\theta_{\rm max} = 27.4^{\circ}$

2750 reflections with $I > 2\sigma(I)$

Crystal data

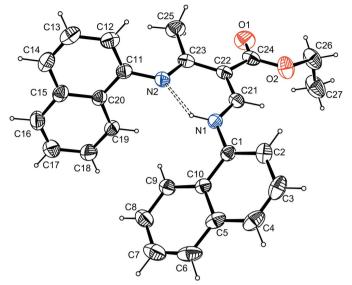
$C_{27}H_{24}N_2O_2$
$M_r = 408.48$
Monoclinic, $P2_1/c$
a = 6.9502 (5) Å
b = 16.2139 (7) Å
c = 19.2198 (7) Å
$\beta = 95.309 \ (2)^{\circ}$
V = 2156.6 (2) Å ³

Data collection

Nonius KappaCCD diffractometer φ scans, and ω scans with κ offsets Absorption correction: none 8395 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0813P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.056$	+ 0.2247P]
$wR(F^2) = 0.175$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
4889 reflections	$\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^{-3}$
282 parameters	$\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	


Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···N2	0.86	1.95	2.596 (2)	131

All H atoms were positioned geometrically and treated as riding, with C-H = 0.93 (CH), 0.97 (methylene) or 0.96 Å (CH₃) and N-H = 0.86 Å, with U_{iso} (H) = 1.2 U_{eq} (CH, CH₂ or N) and 1.5 U_{eq} (CH₃).

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Nonius, 1998); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

Figure 1

The molecular structure of the title compound, showing the atomic labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. The intramolecular hydrogen bond is shown as a dashed line.

We are grateful to Dr Abdelkader Bouchoul (Laboratoire de Chimie Moléculaire, du Contrôle de l'Environnement et des Mesures Physico-Chimiques, Université Mentouri Constantine) for his assistance with this work.

References

- Beghidja, A., Benboudiaf, A., Beghidja, C. & Welter, R. (2004). *Acta Cryst.* E60, 0228–0229.
- Benboudiaf, A., Bouchoul, A., Ouahab, L. & Bouaoud, S. E. (2005). Asian J. Chem. 17, 2117–2121.
- Kerry, M. A., Boyd, G. W., Mackay, S. P., Meth-Cohn, O. & Platt, L. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2315–2321.

Kraak, M. H. S., Wijnads, P. & Govers, H. A. J. (1997). Envir. Toxicol. Chem. 16, 2158–2163.

- Meth-Cohn, O., Narine, B. & Tarnowski, B. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 1520–1530.
- Moussoui, F., Belfaitah, A., Debbache, A. & Rhouati, S. (2002). J. Soc. Alger. Chim. pp. 71–78. (In French.)

Narine, B. & Meth-Cohn, O. (1979). Tetrahedron Lett. pp. 3111-3114.

- Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen. Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.